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Mixing Theory in the 

S U M M A R Y  
The application of the multimoment integral method to the study of the base pressure behind a supersonic vehicle is 
examined. The primary purpose is to understand the exact nature of the Crocco-Lees critical point, which provides 
a uniqueness condition in the problem. The analysis is carried out mainly in Poincar6 phase space, where the'singular- 
ities of the differential equations are investigated. Two singular curves are found. The one which is physically meaning- 
ful for the near wake flow is located downstream of the rear stagnation point. This singular curve consists of saddle 
points which yield "wake" solutions, and focal points or saddle-loci. Only those saddle points which yield "wake" 
solutions correspond to Crocco-Lees critical points. Thus, the integration of the differential equations should be 
started from a saddle point both for the upstream and the downstream solutions. The current analysis then requires 
that one deal with only a one-parameter (freestream Mach number) family of solutions, rather than the two-parameter 
(freestream Mach number and Reynolds number based on thickness of the viscous shear layer at the rear stagnation 
point) family of solutions obtained in previous works. Finally, this paper clarifies anomalous details of previous 
numerical investigations carried out for the near wake by Webb, Golik, Vogenitz, and Lees. 
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See Eq. (11) 
See Eq. (11) 
See Eq. (14) 
See Eq. (12) 
See Eqs. (17a) and (17b) 
See Eq. (7) 
Local Mach number at the edge of the shear layer 
Freestream Mach number 
See Eq. (12) 
Pressure 
Freestream Reynolds number based on the thickness of the shear layer at the rear 
stagnation point taken as unity 
Equivalent freestream Reynolds number 
Minimum freestream Reynolds number 
Velocity component parallel to axis 
Velocity component normal to axis 
Dimensionless velocity ratio 
Dimensionless velocity ratio evaluated on the axis 
Cartesian coordinates parallel and normal to axis, respectively 
Dependent variables of the governing differential equations, see Eq. (11) 
See Eq. (7) 
Specific heat ratio, equals 1.4 
Physical thickness of the viscous shear layer 
Displacement thickness of the viscous shear layer 
Enthalpy ratio = (1 + �89 - 1)M~ z)-I 
Independent variable of the governing equations 

* Former Member of Technical Staff, Aerosciences Laboratory, TRW Systems, Rendondo Beach, California, USA. 
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Transformed coordinates transverse and normal to axis, respectively 
Characteristic roots of the set of the linear equations (Eq. 15) which describes the 
behavior of the singularities 

Viscosity coefficient 
Normalized transformed normal coordinate, see Eq. (10) 
Density 
Angle of inclination of the inviscid flow at the edge of the viscous shear layer 
measured positive in the clockwise sense, see Eqs. (3) and (5) 
Prandtl-Meyer relation 

Subscripts 
i 
i,j 
c 

oo 

Condition of the flow at the rear stagnation point 
Cartesian tensor indices 
Condition at the critical point 
Condition at the edge of the viscous shear layer 
Freestream condition 

1. Introduction 

Much attention has been focused on the calculation of the base pressure behind a supersonic 
vehicle at zero angle of attack. Crocco and Lees [I] pointed out over a decade ago that 
"mixing" between the viscous region near the axis of the wake and the inviscid outer region is 
very important in establishing the properties of the base flow. Using boundary layer equations 
to describe the viscous region, these authors showed that in order to determine uniquely a 
physically meaningful solution, the integral curves of the viscous conservation equations must 
go through a downstream saddle-point-type singularity. This mathematical singularity has 
become known as the Crocco-Lees "critical point" ; the physical interpretation of this critical 
point is that the flow undergoes a transition from one which is subsonic in the mean (or sub- 
critical) to one which is supersonic in the mean (or supercritical). The original mixing theory of 
Crocco and Lees, however, required the introduction of an empirical relation to complete the 
formulation so that all the unknowns could be determined. By applying multimoment integrals 
to the boundary layer equations, Reeves and Lees [2] finally removed the need for empirical 
data. Furthermore, with the aid of Stewartson's [3~ reverse flow profile, the solution upstream 
of the rear stagnation point showed the characteristics of a recirculation region. However, the 
theory did not give a satisfactory prediction of the distance over which the pressure rises from 
the base value (the pressure behind the vehicle after the flow has expanded around the base) to 
the downstream maximum value (the over-shoot pressure produced by the compression which 
turns the converging wake flow back parallel to the axis). Webb, Golik, Vogenitz and Lees [4] 
improved the prediction of the pressure recovery distance by introducing a modified Stewartson 
profile with one higher-moment equation. In addition, Webb et al. tried a polynomial velocity 
profile and found that although the Stewartson profile provided better results upstream of the 
rear stagnation point, the polynomial profiles led to almost identical results downstream of the 
stagnation point. 

One also observes that in Refs. 1, 2 and 4, the "body" which produces the base flow has never 
been included in the analysis; thus the only meaningful physical length in the problem appears 
to be the thickness of the shear layer at the rear (or wake) stagnation point. In Fig. 1, a sketch 
of the flow field under consideration is shown ; the origin of the physical coordinates x, y is 
located at the rear stagnation point. 

In both tile work of Reeves and Lees and of Webb et al., the problem was treated as an 
initial-value one, and the initial condition was taken as the condition at the rear stagnation 
point. Since the location of the critical-point singularity was not known a priori, the problem 
became one of finding, by trial and error, those initial conditions that permitted the integral 
curves to pass through the singular point. 
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The Crocc~Lees mixing theory 171 

In the work by Webb et al., the problem became fully specified when the values of two 
independent parameters were given. The first parameter was the freestream Mach number 
M~ and the second one, the freestream Reynolds number R~, based on the initial thickness of 
the shear layer. The need for this second parameter obviously arose from the fact that the initial 
value of the shear layer thickness must be prescribed in order to fully specify the problem. 

Y 

inviscid external flow 

o ~, s ~ x ~  
. 

  scous  ayer 

recirculation~ [ Oi ~ I a(x) 
region~ ~'~ dlvldlngstreamline ] axis 

" X 

~'~rear stagnation point 

Fig. 1. Schematic of the flow in the neighborhood and downstream of the rear stagnation point. 

One, therefore, dealt with a two-parameter family of solutions. In their numerical investigation, 
they further discovered that for a fixed M~, there existed a minimum freestream Reynolds 
number Rum such that for R~< Room no solution could be found. The most severe case occurred 
when the total enthalpy of the flow is conserved (adiabatic flow); e.g., for M~o = 6, Room became 
as large as 2 x 104 for both the Stewartson and polynomial velocity profiles. When the flow was 
verycold(non-adiabatic),R~mdecreasedtoaslowas0.8 x 104.Also, unexpectedly, forRoo >Room 
two acceptable initial conditions existed.* The second initial condition occurred at a much 
higher initial Mach number and was, therefore, taken to be physically unrealistic. Nonetheless, 
it furnished a perfectly acceptable solution for the problem in a formal mathematical sense. 
This discovery seemed to indicate a possible non-uniqueness of solution inherent in the dif- 
ferential equations adopted to describe the physical phenomenon. The same non-uniqueness 
appeared in the numerical solution of the near wake obtained by Baum and Denison [5] using 
finite-difference methods. 

In the present paper, an attempt is made to examine critically the multimoment method used 
by Webb et al. The following items are investigated: 
1. The location and nature of the singularities of the differential equations; 
2. the conditions under which a "wake solution" exists; and 
3. all the possible solutions of the equations which pass through such saddle-point singularities 

as are found to exist. 
The present analysis also shows that the differential equations depend on only one parameter, 

the freestream Mach number; consequently, the solutions form a one-parameter family. This 
point will be expanded upon below when integration of the equations starting from the saddle- 
point singularity (rather than from the rear stagnation point) is suggested. 

In order to bring out the essential features of the analysis without unnecessarily tedious 
algebra, the author has elected to treat only the polynomial velocity profiles for the adiabatic 
Case. Also, it is convenient to carry out a major portion of the analysis in Poincar6 phase space. 

2. Multimoment Integrals and the Velocity Profiles 

In the following treatment all symbols and definitions are identical with those adopted in [4]. 
The boundary layer approximations are applied to the viscous shear layer, which is assumed 
* Private communication from Dr. R. Golik of TRW Systems. 
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to be a two-dimensional compressible adiabatic flow. The governing equations are: 

a(pu__) + a(p ) _ o (1) 
~x 8y 

8u ~u dp O ( # 8 u )  
pu ~x + pv 8y - dx + ~y ~y . (2) 

The external flow field is taken to obey the Prandtl-Meyer relation. If we denote ~b as the 
angle of inclination of a streamline entering the edge of the viscous layer (see Fig. 1) then 
(see [-4]) 

= (3) 
and 

= [ 7 + 1 )  -~ 1 [ 2 - ( 7 +  1)e~ ~ ~2 (1 -e )  17 ~ 
co \ 7 _ i  ) tan- L  u il - t a n - '  L(7-1)= -_1 (4) 

where e = (1 + �89 + 1) M~)- 1 is the enthalpy ratio written in terms of the local Mach number at 
the edge of the boundary layer. In order to make the inviscid flow field compatible with the 
viscous region, one must satisfy an overall continuity relation (see [1]) 

tan (p - v~ _ (6-(5*) d d,5* 
u~ dxx in p~ u~ - d~-" (5) 

Webb et al., found it convenient to introduce the following transformation for the spatial 
coordinates x and y: 

R~ 1 f x p~u~ dx 
Jo /to (6) 

R~#oJ o P~ 

Furthermore, a dimensionless velocity, U = u/uo, was adopted. Equation (2) then becomes 

1 
f,~fr -fcf~,~- [(1 - f ~ )  - 2(1 -- e)ff~,t ] fl - ~ -  f~,~ = 0 (7) 

fl 1 where f =  Udr/and fi = 2~(1-~) d~" 

We now define the i-th moment of the x-momentum equation (2) by the integral relation 
( 
[ f~[left side of Equation 7] dr/= 0 .  (8) 
jo  

For the moment integrals the normalized polynomial velocity profiles of [4] are considered : 

U = 1 - (1  - Uo) S(v) (9) 

where 

S(v) = 1 - 2 v 2 + v  4 when a quartic profile is desired 
S(v) = 1 -  3v2+ 2v 3 when a cubic profile is desired 

and 

v =  t/ where 0 < v < l .  (10) 
r/o 

It may be noted that these profiles satisfy the zero-gradient condition at the axis [(q/r/o)=0] 
and at the edge of the shear layer [(r//r/~) = 1]. Uo, t/a and e are unknown functions ofr To solve 
for these quantities, one finds three first-order simultaneous ordinary differential equations 
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by means of the overall continuity equation (5), and the zero-th and first moments of the mo- 
mentum relation (8). In order to write the equations simply, one may adopt the following 
shorthand notation: x l=e ,  x z =  Uo and x3=tl~Ro o. The symbols xl, x2, x 3 and e, Uo, ~/oR~o 
will be used henceforth interchangeably. One further writes for the independent variable 

= ~Roo, so that R~o no longer appears explicitly in the differential equations. The implication 
of this substitution will be discussed later. 

The three first-order simultaneous differential equations can now be written compactly: 

aiSc j = Ci (i,j = 1, 2, 3) (11) 

where the coefficients a~j and C~ are functions of xj; the dot signifies total differentiation with 
respect to ~. Explicit expressions for these coefficients are given in the Appendix. 

The derivative of each component x~ can be obtained by Cramer's rule so that Eq. (11) 
becomes symbolically 

dx i d~ 
N, (x j) - D (x j) (12) 

where D is the determinant of the matrix {aij}. 

3. Analysis of the Singularities 

Equation (12) is invariant under translation of the independent variable ~; such a set is known 
as an autonomous system. It is possible to exploit the translational invariance and to obtain by 
division two equations of the form 

dxl Nt (x1, x2, x3) 

d x  2 N 2 (x1, x2, x3) 
and (13) 

dx3 N3 (Xl, x2, x3) 

dx2 N2(xt, x2, x3)" 

The variables x 1, x2, x3 form a three-dimensional space (called the Poincar6 phase space [6, 7]). 
A point xlc, X2c, x3c in the phase space for which Ni(xj~)=0, i , j=  1, 2, 3 is called a singular 

point or singularity of (13). It can be shown that D(x1~, xa~, x3~) in (12) must then also be equal 
to zero. Equation (12) is then said to have a singular point in the ~-plane. However, its location 
in ~ is not known until further computation (discussed below) is carried out. Near the singular 
point, Ni(xj) can be expressed by a Taylor series: 

Ni(xj) : C i j (x j -  xjc) + 0 [(x j -  xjc) 2] (14) 

where the coefficients Cij are obtained by evaluating the first partial derivatives ONi/Qxj at 
xj = xjc. The behavior of the integral curves of (13) in the neighborhood of the singular point* 
depends entirely on these coefficients. It is known from classical analyses in phase space that 
if one forms a cubic algebraic equation in 2 from the C# of the type: 

110 i = j  (15) [Cij--~(~ij ] = O,  6iJ = i # j  

then the values of the roots, 2k (k = 1, 2, 3) of(15) determine the type of singularity at xj=xj~ [6]. 
In the particular application of Poincar6 phase space analysis to the near wake, each Ni in 

Eq. (13) is set to zero: 

Ni(x1, x2, x3) = 0 ,  i = 1, 2, 3 (16) 

Geometrically, each Ni represents a surface in phase space. In the interval - 1 < Uo < 1, only 
two independent relations can be derived from Eqs. (16). This indicates that the intersection of 
* Higher-order singularities are not considered here. 
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the three surfaces are curves rather than points. The two relations are here formally written : 

F1 (xl, x2) = 0 (17a) 
and 

F2 (xl, x2) = x3 (17b) 

Full expressions of Ni, F1, F2 and ONi/Oxj are given in the Appendix. 
The solution of Equation (17a), which depends only on the assigned velocity profile, yields 

curves in the (xl, Xz) plane. These curves are here called the base curves. In Fig. (2a), the base 
curve based upon the quartic profile is presented, while in Fig. (2b) two base curves, one based 
upon the quartic and the other based upon the cubic profile, are shown in the range 0.3 < x2 < 
0.35 to illustrate the influence of the chosen velocity profiles. Upon specification of a freestream 
Mach number*, the location of the singularities (curves in phase space) can be determined from 

projection of upstream projection of downstream 
1.0 singular curve singular curve 

- l . 0  -0,8 -0.6 -0 .4  -0.2 0 0.2 0.4 0.6 0.8 1.0 

Uo 

Fig. 2a. Base curves or projection of singular curves on the (~, Uo) plane for a quartic profile. 
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J 

/ /  
/ / 
0.30 0.31 0.32 0.33 

Uo 

cubic  profile 

quar t ic  profile 

0.34 0.35 0.36 

Fig. 2b. Enlarged section of base curves for 0.3 < Uo <0.35 for both  cubic and quartic profdes. 

Eq. (17b) by substitution into F2 of the values of xl and x2 found from Eq. (17a). The form of 
Eq. (17b) suggests that the base curves are just the projections of the singular curves on the 
(xl, x2) or (e, Uo) plane. A one-to-one correspondence exists between the points on the base 
curves and the singular curves. 

Equation (17)is also satisfied by the point e = e~ = {1 + �89 1) M 2  }-1, Uo = 1 and x s  0. 
One notices that this singular point in phase space corresponds to the freestream condition of 
the flow. 

Having located all the singularities, one now proceeds to study the nature of each singular 
point. 

1. The downstream singular curve (Uoo > 0). With reference to Fig. 3, for points on the singular 
curve with values ofe in the range, e~o > e => et, Eq. (15) yields three real roots; one root is positive, 

* The specification of the freestream Mach number  Moo establishes an asymptote, i.e., an upper limit, for e, called e~. 
The condition eo~ >~ > 0  implies that q5 =>-0. 
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one negative and one very close to zero. Because these roots are purely real and because roots 
with both positive and negative signs occur, it is well-known from phase plane theory that these 
singularities are saddle points. For those points on the singular curve with values of e< et, 
Eq. (15) yields one real root very close to zero and two conjugate complex roots. Such singular- 
ities are either focal of saddle-foci. The singularities are focal points if the signs of the purely 
real root and of the real part of the complex roots are the same; if not, the singularities are 
saddle-loci. As the freestream Mach number is increased, the band of saddle points contracts. 
The bands of saddle points are shown (on base curves) in Fig. 3 for M~ = 6 and 10. 

2. The upstream singular curve (Uoo < 0). Saddle points are found on this curve. These saddle 
points are in the reversed flow region because Uoc < 0, The local Mach number associated with 
these saddle points is too high to be physically acceptable for the reverse flow region, known 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

e~ (Moo = 6) 

A /  
band of saddle points, Moo = 6 ~ / / J ' P "  

~,(Mo0 = 6) ...... ~ / /  

base 

~| (M~ = 10)~ / 

curve 

( M ~ = 1 0 ) ~  

e l ~ ' - - ~ a n d  of saddle points, M~ = 10 /,u 
0.305 0.310 0.315 0.320 

Uo 
Fig. 3. Projection of bands of saddle points for M~ =6, 10 for a quartic profile. 

from experiments* to be characterized by small Mach number. Hence, these singularities can 
have no relevance to the nearwake problem. 

3. The freestream condition. At this singular point, all first partial derivatives vanish. Con- 
sequently, this point is a singularity of higher order. - 

As mentioned earlier, R~ does not appear explicitly in the differential equations. Thus, the 
locations as well as the nature of the singularities are independent of this parameter. This 
observation saves a great deal of work when the equations are integrated. Specifically, rather 
than having a two-parameter (M~, R~) family of solutions (as was the case in [4]), one deals 
with a one-parameter (M~) family of solutions. 

4. Integration of the Equations 

The remaining task is to obtain those integral curves which pass through the downstream 
saddle points. Since the saddle point is known to be unstable as far as numerical integration is 
concerned, it is always easier to integrate away from a saddle point rather than toward it [8]. 
* Private communication with Dr. Richard G. Batt of TRW Systems. 
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In order to integrate away from the singular point, one must determine the slopes of the integral 
curves at the singularity. In three-dimensional phase space, the characteristic equation (15) has 
three distinct real roots. 21 is taken as the positive root; 22 ~ 0; and 23 is the negative root. 
Each root yields a set of values of the slopes dx 1/dx 2 and dxJdx2. Hence three distinct integral 
curves go through each saddle point. Once the values of dxl/dx2 and dx3/dx 2 are found at the 
saddle point, the derivatives dxi/d~ at the singular point in physical space can also be determined 
in a similar process in which the determinant D in (12) is expanded in a Taylor series. A typical 
example of the initial slopes dxl/dx 2 or de~dUo is presented in Fig. 4. The first positive slope is 
associated with the positive characteristic root 21 ; the negative slope, with the negative root )~a ; 
and the second positive slope, with the slope 22 ~ 0. One notices that the second positive slope 
(exaggerated in the drawing) is almost tangent to the base curve. This is not surprising since the 
slope of the base curve corresponds to a zero root. This fact indicates that the curvature terms 
(second derivatives) play an important role on this integral curve. 

0.15 

0.10 

0.05 

subcritical ~ base 
curve 

).2_10 -9 

23 = - 7.47 21 "~ 0, 0, ~ o  > 0 
de 

23<0, ~oo_~0 21=5.2 

supercritical 

I I I I I I 

0.308 0.310 0.312 0.314 0.316 0.318 0.320 0.322 

Uo 
Fig. 4. Initial slopes, de~dUo, at a saddle point for Mo~ =6, quartic profile. 

Either Eq. (13) or (12) can now be integrated to give the final answer. Equation (12), however, 
has the advantage of also yielding the corresponding physical distance. 

One must now decide which characteristic root yields the wake solution. Based on physical 
considerations, one adopts the following criteria to select the wake solution: 

(1) The integral curve in phase space must go through the rear stagnation plane (Uo = 0) and 
the saddle point (0 < Uoc < 1), and must approach the freestream condition asymptotic- 
ally. 

(2) Along the integral curve, one requires that de/dUo > 0, t/~ > 0 and eoo> e > 0. The condition 
de~dUo >0  implies that de/d~ >0  and dUo/d~ > 0  in physical space 

(3) Integration through the saddle point must move a point on the integral curve from the 
subcritical region to the supercritical region. 

This three-part criterion immediately picks the positive root 21 as the right one. The integral 
curves calculated from the two remaining characteristic roots also provide mathematically 
correct solutions to the differential equations, but are not physically acceptable as descriptions 
of the wake. 
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5. Resu l t s  and Conc lus ions  

As mentioned earlier, for a given freestream Mach number, the downstream singular curve 
consists of a band of saddle points, from each of which stem integral curves. Integration from 
all the saddle points provides, therefore, an infinite number of integral curves or a continuous 
integral surface (see Fig. 5). Proceeding downstream, one finds that the numerical process is 
very stable and all the integral curves converge asymptotically to the freestream condition 
(Uo~ 1, e~eo~ as t/6~ 0% ~ or x ~  ~) .  Based on this fact, one concludes that the point correspond- 
ing to the freestream condition behaves like a node. Proceeding upstream, however, one dis- 
covers that the situation is somewhat different. Since the rear stagnation point is a regular 
point of the differential equations, integral curves from different saddle points would lead to 
different rear stagnation points on the Uo = 0 plane, and the loci of these rear stagnation points, 
which is the intersection of the integral surface and Uo = 0 plane, is a continuous curve (see Fig. 

loci of rear stagnation points (initial value curve) ~ , , . /  
intersection of the integral surface and Uo=0 plane Au 

/ 
/ / / / /  downstream singular 

integral s u r f a c e .  ~ - 2 " ~ x ~  curve 
i I 

 o=0 _j__j I 

V o = l ~  Uo 
Fig. 5. Sketch of the integral curves through the downstream saddle points in phase space. 

5). This curve, called the initial value curve, is presented in two different ways in Fig. 6. In Fig. 
6a, the curve is plotted with x3 as the ordinate and Uoo as the abscissa; hence one knows from 
which saddle point the integral curve comes. In Figure 6b, ei replaces Uoo as the abscissa and ei 
is the value of e which corresponds to the rear stagnation point. The curve shown in Fig. 6 is a 
universal one for a given M~o. 

The location of the singularity in the physical plane, ~-plane, can now be found. Denoting 
~ as the distance between the singularity and the rear stagnation point, one determines this 
distance when the integration of Eq. (12) which starts from Uo = Uoo and ~ = ~o, reaches a value 
of [20 = 0 (which corresponds to ~ = 0). This singularity is the Crocco-Lees critical point. 

In order to bring out the effect of the freestream Reynolds number, one must know the 
physical shear layer thickness 6~. From the definitions of t/(x, y) and x3, ~ can be calculated 
once R~o is specified. As an example, for Mo~ = 6 and R~ = 105, values of ~ are calculated and 
the results are given in Fig. 7a and 7b. One notices that by specifying different Roo, the curves 
in Fig. 7 merely move up (Roo decreasing) or down (R~ increasing). It is not difficult to under- 
stand certain numerical discoveries of Drs. W. Webb and R. Golik (private communication). 
The lowest point of the curve corresponds to the case Ro~ = Ro~m. Above this point there are 
always two points on the curve corresponding to the same value of 6~; thus two acceptable 
initial conditions appear. Furthermore, in [4], the value of 6~ is always taken to be unity and, 
based on this length, R~ is defined. In the present calculation, if R~ is defined based on an 
unspecified length of value unity, then the value of 6~ can no longer be specified at will but must 
be accepted from the calculations. We may, however, introduce an equivalent Reynolds 

Journal of Engineering Math., Vol. 4 (1970) 16%182 



I 

X 

0.4 

0.3 

0.2 

0.1 

0 

curve of initial co 

Y 
0.315 0 .316 0 .317 

g o  c 
Fig. 6a. x3 versus  Uoo in the /_70=0 plane. M~=6.  

0.318 

I 

X 

0.3 

0.2 

0.1 

J 

curve of initial c o n d i t i o n s -  

/ 
J 

J 

0 
0.04 0.05 0.06 0.07 0.08 

Fig. 6b. x3 versus  el in the Uo=0 plane. M~ =0. 

0.09 0.10 0.11 



The Crocco-Lees mixin9 theory 179 

number Ro~o based on the calculated values of 61. The relation between the two Reynolds 
numbers is obviously just Ro~o = 6i x R~o. Taking 6i = 0.2 from the lowest point of the curve in 
Fig. 7, one obtains R~o = 2 x 104. This is exactly the value of Room found by Webb and Golik, 
as mentioned in the Introduction. Hence, their result is explained. Different saddle points on 
the singular curve are associated with different Reynolds numbers. 

Integration from the saddle points upstream does not necessarily bring the integral curve 
through the rear stagnation point. Calculations show that for the case of Mo~ = 6, at a value of 

0.40 
I 
I 
I 

0.35 I 

0".25 

0.20 

0.31 0.316 0.317 0.318 
Go c 

Fig. 7a. Initial value curve in the rear stagnation plane (Uo = 0). M~ = 6, R~ = 10 i, quartic profile. 

0.35 

0.30 

~i 0,25 

0.20 

0.15 
i i i 0.~10 0.i12 ~1 0.02 0.04 0,06 0.08 0. 4 0.16 

Fig, 7b. Initial value curve in the rear stagnation plane (Uo=0). M~ =6,  R~ = 10 s, quartic profile. 

Uo~ = 0.3151, the integral curve ceases to cross Uo = 0, even though saddle points exist at values 
of Uoo as low as 0.313 (Fig. 3). As an illustration of this observation, two typical integral curves 
of Uo vs. x are drawn in Fig. 8. In Fig. 8a, the integration starts from the saddle point cor- 
responding to Uoc=0.315 and the curve never reaches a Uo=0 condition. Based on this fact, 
the conclusion is drawn that not all of the saddle points are critical points of the wake solution. 

We now summarize our findings in the following: 
1. Two singular lines exist in the phase space, one upstream and one downstream of the 

rear stagnation point. The upstream one has no physical meaning to the near wake flow, 
while the downstream one consists of saddle points. 

2. The point at downstream infinity is a singularity of higher order; it behaves like a node. 
3. Three integral curves pass through each saddle point on the downstream singular curve 

in phase space. The wake solution corresponds to the one associated with the positive 
characteristic root. Not all of the saddle points yield a wake solution. Those saddle points 
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which do lead to wake solutions correspond to the Crocco-Lees critical points in the 
physical plane. 

4. The differential equations yield a one-parameter (M~) family of solution instead of a 
two-parameter family (M~, R~) as suggested in the work of Webb et al. The effect of the 
Reynolds number (Ro~) comes in only at the initial condition. 

5. The existence of a minimum freestream Reynolds number and of the double initial 
conditions found by Webb and Golik has been clarified. 
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These phenomena demonstrate the limitation of the multimoment method for wake calcul- 
ations, since for freestream Reynolds number below a certain minimum, no solution can be  
furnished by the method. Furthermore, the theory itself provides no way to choose the right 
branch of solution for R~o >Room unless additional information is given. 
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Appendix 

In this appendix the full expressions of many quantities treated symbolically in the text are 
given. The % and C~ of Eq. (11), N~(xj) and D(xj) of Eq. (12), F~ of Eq. (17a), Fz of Eq. (17b) 
and the first order partial derivative ON,/axj are for the present case: 

aij= ~-e*A*Roo KIX 3 K2W , Ci= 0 

I.-2e*eO1R~ K3x 3 K4W j 2 G 
x3 

where 

f l  f l  W = 1 -  Uo, A = S2(v)dv, B = S 2 ( v ) d v  
o o 

t 1 f 2 C = S 3 (v) dv, G = dr, 
o o \ ~ /  

I~- I R~ -_ ~ = x3(A*g2 + B*e-[-C *) 

01 Ro~ = 01 = x3 WK4 

ON1 
Oxl 

aN1 
ax2 

aN1 
Ox3 

aN2 
Oxl 

ON2 
Ox2 

a~ 
~X 3 

e* = �89 [ e (1 - e)]-I 

A* R~o = A = x3 W(WB-t- 2Kzg ) 

C C 
-- X3~() [ ( K 1 K , , - K z K 3 ) - A B W ( 1 - 4 ~  W+3-~  W2)] + 8ABGW 3 

Weq~(K1K4- KzK3) 

- -  Bx3W3K4e* @ ~ + e ~ ) -  2Ge*WaK2(2A*e+B*+2AW) 

- Bx3 W 2 [3K4 + W ( 2 W C -  3B)] e*eq5 + 

+ 6e* GW 2 [K2 A* e 2 + K 2 (B* + 2A W) e + K2 C* + ABW 2] 

+2e, W3G[e2 ~d (K2A,)+e ~d (K2(B,+2AW))+ d~(K2C,+ABW2)]  

- BW3K4e*ec~ 
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- 2xZz*e~)WK5 + 2WEG~.*x3(2KI A*~ + K1B*-  2K2AW) 

ON3_ox2 x~*e4)W [B d-dW (K3W)+2eAB ( 1 - 4 C ~  W+3 C-A W 2)1 

- -  2WGe*x3 [ g t  A*e 2 + (KtB* - 2KzA W)e + Kt C* - ABW 2] + 

-2WZGe*x3[ez d (K~A*)+e d ~ ( K ~ B * - 2 K : A W )  + d ~  

ONa = xse ,  eqSW [K  s W B - 2 K s e  ] . 
t~x 3 

A* 7 + 1  ( 1 - 2 W A + W 2 B )  
= y - 1  

B , = Y + I  ( 2 A W _ W 2 B ) _  2 ( I _ 2 W A + W 2 B ) _ W 2  B 
~ - 1  

2 (2AW_W2B)  C * =  W Z B -  

K 1 = - A + 2 W B  K 2 = A - W B  K3 = - 2 A + 6 W B - 3 W 2 C  

K 4 = 2 A - 3 W B +  W2C K 5 = K 1 K 4 - K 2 K  a 

N 1 = N~ = -x2W[Ksedp+A(K 1 +Ke)O* ] 

= = O O,- AO* 

N 3 = e*X 3 [KIO*~I+KaAer 1 -AO~A] 
D = ~* Wx3 [K 5 ~ + 2ABWeO~ - A W ( 3 B -  2WC) A] 

F 1 (e, Uo) = [2eW (K~ K , -  K 2 K 3 ) - K  3 W2B] + 

+ 1 - 2 ~ W + ~ W  2 [KI(A*e2+B*e+C*)-AW(WB+2K2e)]=O,(17a)  

2GW 2 
F2(e, Uo)= = x a (17b) 

1-2cw+ w 
B 
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